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Accurate self-localization is a key enabling technique for many pervasive applications.
Existing approaches, most of which are multilateration based, often suffer ambiguities,
resulting in huge localization errors. To address this problem, previous approaches discard
those positioning results with possible flip ambiguities, trading the localization perfor-
mance for the result robustness. However, the high false positive rate of flip prediction
incorrectly rejects many reliable location estimates. By exploiting the characteristics of flip
ambiguity, which causes either huge or zero error, we propose the concept of optimistic
localization and design an algorithm, OFA, that employs a global consistency check and a
location correction phase in the localization process. We analyze the performance gain
and cost of OFA, and further evaluate this design through extensive simulations. The results
show that OFA obtains robustness with extremely low performance cost, so as to reduce
the requirement on the average degree from 25 to 10 for robustly localizing a network.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Location awareness is critical for both data interpreta-
tion and network services in wireless sensor networks
[1]. Nevertheless, it is impractical to manually configure
node positions or equip all nodes with specialized posi-
tioning devices (e.g. GPS receiver) in a large-scale cost-sen-
sitive network. Hence, it is of great importance to
investigate the self-localization problem: determining
node locations through a set of inter-node distance mea-
surements as well as a set of nodes (called anchors) with
pre-known locations.

Trilateration (or multilateration) is a widely used meth-
od for network localization [2]. The basic idea of trilatera-
tion is to position an object using distance measurements
to at least three nodes at known locations. Trilateration-
based approaches, however, are not robust under noisy
distance measurements. Among the problems brought by
ranging errors, flip ambiguity is one of the major chal-
lenges [3], as it causes huge errors in the location
estimation.

Flip ambiguity refers to the case in which a to-be-lo-
cated node has two possible positions corresponding to a
‘‘reflection’’ across a set of mirror nodes. As illustrated in
Fig. 1, the nodes b, c, and d are anchors with known posi-
tions and the node a computes its position through mea-
surements dab, dac, and dad. Each measurement defines a
ranging circle centered at the reference node with a radius
of the corresponding measured distance, as shown by the
dashed circles. Owing to measurement errors, three rang-
ing circles do not exactly intersect at a common point.
Hence, it is ambiguous to determine whether the position
a or a0 is the ground-truth location of node a. In this case,
an incorrect determination will lead to a huge localization
error. Besides single-node flip, a more serious problem is
the network-wide flip: a part of the network flips over an-
other part. As shown in Fig. 2, we sequentially localize the
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Fig. 1. Illustration of flip ambiguity.
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Fig. 2. A network-wide flip.

1530 X. Wang et al. / Computer Networks 57 (2013) 1529–1544
nodes d and e by three anchors a, b, and c, which are
approximately collinear. If node d is wrongly localized to
the flipped position d0, node e will also be flipped to the po-
sition e0. Eventually, a whole part of the network might be
flipped across anchors a, b, and c.

Existing algorithms often address the problem by dis-
carding the location estimates that may suffer from flips
[2]. When locating a node, those approaches evaluate the
risk of flip and discard the suspicious location estimates.
As a result, the performances largely depend on the accu-
racy of flip prediction. Here, the word ‘‘performance’’ refers
to the proportion of nodes that can be successfully local-
ized out of all nodes in a network. Unfortunately, there
are no such predictors that accurately identify flips. Imper-
fect predictors lead to: (1) false positive result: a predictor
wrongly reports a correct result as flipped; (2) false nega-
tive result: a predictor wrongly reports a flipped result as
correct. The aggressiveness of predictors determines a
tradeoff between the false positive rate and the false neg-
ative rate. By this inherent tradeoff, we have to carefully
balance two critical requirements: robustness and perfor-
mance. To compensate the degradation of performance,
we need high network density (over 25 neighbors on aver-
age [2]) to fully localize a network, which is practically dif-
ficult [4,5]. Clearly, simple discarding is conservative and
pessimistic.

In this study, we propose an Optimistic localization
scheme with Flip Avoidance (OFA) to achieve both perfor-
mance and robustness. This design is motivated by the fol-
lowing observations. First, flip ambiguity causes either
huge error or zero error. We classify the error sources of
a localization result into two kinds: the ranging error and
the flip ambiguity. Clearly, the former error cannot be
eliminated. The latter error, however, depends on whether
a flip is triggered or not. That is, flip ambiguity causes
either huge error or no error at all. Second, anchors in a
network provide a reliable skeleton to check whether the
position assignment suffers possible flips. In contrary to
pessimistic designs, OFA assumes that the position assign-
ment for each node is robust, and checks the correctness of
the position assignment by the anchor skeleton. If current
location estimates match the skeleton, the robustness of
the estimates is confirmed; otherwise, OFA will correct
the flipped nodes. The advantages of OFA are twofold: first,
to localize a superset of nodes in contrast to pessimistic de-
signs; second, to guarantee robustness for flips.

Major contributions of this work are as follows.

1. We propose the concept of optimistic localization to
avoid flips and design a distributed localization
algorithm.

2. We introduce two key mechanisms to support OFA
design: the consistency check and the error correction,
which process position estimates falling into false posi-
tive and false negative predictions.

3. We conduct extensive simulations to evaluate the per-
formance of OFA design. The results show that OFA
obtains robustness with extremely low performance
cost, so as to reduce the basic requirement on average
degree from 25 to 10 for robustly localizing a network.

The rest of this paper is organized as follows. We dis-
cuss the related work in Section 2. Next, we present the ba-
sic idea of OFA in Section 3 and describe the details of the
OFA protocol in Section 4. In Section 5, we analyze the per-
formance and cost of OFA. Experimental studies are pre-
sented in Section 6. Finally, we conclude the work in
Section 7.
2. Related work

Flip ambiguity is first defined in rigidity theory for the
graph realization problem [4], which is closely related to
the network localization problem. A number of works em-
ploy rigidity theory to investigate network localizability
using the connectivity property [5,6]. As those designs
are based on the assumption that the distance measure-
ments are accurate, they face difficulties when ranging er-
rors exist.
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Under noisy distance measurements, many algorithms
aim at minimizing the localization errors. Moore et al. intro-
duce the concept of robust quadrilaterals to avoid flip ambi-
guity [2]. They build up robust positioning result by the local
maps that pass the check for flip prediction. Kannan et al. ex-
tend the work to a more general case [7,8]. As a typical pessi-
mistic design, however, their method requires an extremely
high network density to localize a whole network. Liu et al.
[9] and Yang and Liu [3] propose to estimate and control er-
rors step by step in a sequential localization process. They
track the error in each step and select part of the reference
nodesto minimizetheexpectederrorof theresult.Neverthe-
less, we cannot avoid flip ambiguity by error control, because
flip ambiguity can be triggered by even tiny errors. In addi-
tion, as flip ambiguity is a kind of faults in localization, we
can detect and correct the flipped nodes. In contrast, error-
control-based algorithms neglect such faults.

Basu et al. investigate the localization with both dis-
tance and angle measurements [10]. They relax the prob-
lem to the convex form and use linear programming to
solve the relaxed problem. Their design can avoid flip
ambiguity and provide error estimation. However, the
algorithm cannot work well when either distance or angle
measurement errors do not have a clear bound. Moreover,
since it relies on the knowledge of both distance and angle
measurements, the design is not always practical.

Goldenberg et al. propose Sweeps algorithm [6] by track-
ing all possible results of bilateration to improve the perfor-
mance of localization in sparse networks. Bilateration
causes another kind of ‘‘flip’’, which target node has two pos-
sible locations by two distance measurements. Neverthe-
less, we solve a completely different problem compared
with Sweeps. First, we abstract problems from different
backgrounds. Sweeps algorithm addresses the flip issue
caused by bilateration, thus requires the distance measure-
ments to be accurate. In contrast, OFA handles flip ambigu-
ities caused by the ranging errors themself. Second, OFA
guarantees to terminate in polynomial time cost, while
Sweeps cannot. OFA does not track all possible results, so
that it avoids the exponential explosion of the state space.

Some researchers use the Cramer-Rao lower bound
(CRLB) to investigate the error characteristics of network
localization [11,12]. CRLB provides a lower bound on the
variance achievable of an unbiased location estimator
[11]. However, CRLB cannot characterize flip ambiguity.
When there are chances of flip ambiguity, the estimator
can be biased.

Recently, many studies introduce the SDP to solve the
localization problem by centralized optimization method
[13–16]. SDP-based algorithms can also estimate the error
of the localization result [13]. However, the bound of error
is much relaxed, so that using this bound for error prediction
may result in high false positive rate. Besides, the computa-
tion organization of SDP is inherently centralized, which is
not much efficient in terms of energy and communication.

Some researches focus on flip ambiguity under the glo-
bal view [1,17–20]. Lederer et al. attempt to figure out the
correct global layout by purely connectivity information
[1,18]. They utilize Delaunay complex to resolve flip ambi-
guity in global layout construction. Other studies address
flip ambiguity problem in stitching the local maps
[19,20]. Unfortunately, these designs cannot avoid the flip
of a single node. Kannan et al. investigate the error caused
by flip ambiguity in the global location estimation by sim-
ulated annealing [17]. They identify possible flips in the re-
sult of simulated annealing, and then refine the result of
the identified nodes. As the identification is based on the
ranging model and boundary check, it may not identify
all flips. As a result, it cannot guarantee robustness.
3. Design overview

In this section, we first formally analyze the gain of
optimistic design, and then demonstrate the optimistic
algorithm on a simple network topology.
3.1. Problem formulation

Given a network and corresponding distance measure-
ments between neighboring nodes in the network, we
use a distance graph G = (V,E) to present the network, in
which the vertices in V denote the nodes in the network
and each edge (i, j) 2 E denotes node i and node j can mea-
sure the mutual distance. The corresponding measurement
value are presented by a functions: d(i, j):E ? R. We sup-
pose a small portion of nodes, called anchors, know their
locations in advance. Without loss of generality, m anchors
are labeled from 1 to m, together with n �m ordinary
nodes labeled from m + 1 to n, where n denotes the total
number of nodes in the network.

Traditional trilateration-based localization of the target
network constructs a trilaterative ordering of the vertices
in the corresponding distance graph. A trilaterative order-
ing for a graph G is an ordering of the vertices 1, 2, . . . , k,
(m 6 k 6 n), such that, the first m vertices are anchors,
and every vertex i (i > m) is adjacent to at least three dis-
tinct vertices earlier in the sequence. The ordering progress
terminites when there is no vertex fulfill the above condi-
tion. For robust localization, the aim is twofold: to avoid
flip ambiguity and to maximize the number of successfully
located node out of all non-anchor nodes. Hence, the result
without robustness guarantee, i.e. k in this formulation, is
the upper bound of the node number.

A pessimistic design generates a robust trilaterative
ordering that all vertices in the ordering are robust. A ro-
bust trilaterative ordering for a graph G is an ordering of
the vertices 1, 2, . . ., k0, (m 6 k0 6 k), such that, the first m
vertices are anchors, and from every vertex i (i > m), (1)
there are at least three edges to vertices earlier in the se-
quence, and (2) vertex i does not suffer flip ambiguity.
The pessimistic method only focuses on the robustness of
every single vertex, hence it has to exclude the vertices
which may suffer flip ambiguity. These vertices are the po-
tential gain of optimistic design.

To highlight the difference, we make an extra assump-
tion that we start with the result of pessimistic design,
i.e. vertex ordering 1, 2, . . . , k0, (m 6 k0 6 k). Note that this
is not necessary in algorithm implementation. Optimistic
method continues add the rest k � k0 vertices in the order-
ing. The ordering itself implies dependencies between ver-
tices. From every vertex i (m 6 i 6 k), there is a set of prior
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vertices that must be added to the ordering before it. We
define such vertex set as reference set. Such dependency
relationship indicates that the correctness of one vertex
also reflects the correctness of its reference set. Based on
this fact, optimistic method computs the location and
checks the correctness of each vertex. If the result is con-
firmed to be correct, optimistic method then marks the ref-
erence set of the vertex as robust. On contrary, if the result
is confirmed to be incorrect, there must be at least one er-
ror in the reference set. Then, optimistic method tries to
find and correct the source of the error, thus to convert
the incorrect results into correct ones. In a word, optimistic
design outperforms pessimistic ones with the cost of track-
ing and attempting. Considering the fact that localization
only need one-time run for providing continuous service
in a static network, this cost is acceptable in most
networks.

3.2. Optimistic mechanism

We make two basic assumptions in OFA design. First,
the locations of the anchors are reliable. Second, the dis-
tance measurements do not have huge errors. That is to
say, if an embedding of the network cannot match the an-
chor distribution and all the distance measurements
simultaneously, then the position assignment of the to-
be-located nodes contains errors. Current localization sys-
tems typically use manual configuration or GPS to assign
anchor locations, and adopt TDOA [21] or TOA [22] of
acoustic signal to measure distances. Clearly, such systems
obey our assumptions.

To better explain the idea of OFA design, we demon-
strate OFA execution on a simple topology shown in
Fig. 3, where solid squares denote anchors, soft circles de-
note to-be-localized nodes, solid circles denote localized
nodes, and dashed circles denote ranging circles.

Fig. 3a shows the initial state of the network, where two
non-anchor nodes n1 and n2 have five neighboring anchors
a1 � a5. The localization process contains two steps: (1)
localizing node n1 by referring to nodes a1, a2, and a3; (2)
localizing node n2 by referring to nodes a4, a5, and n1.
Unfortunately, nodes a1, a2, and a3 are approximately col-
linear. In this case, pessimistic approaches will discard
the localization result of node n1. Then, node n2 cannot
be localized either. In contrast, OFA maintains one of the
possible location estimates of n1 and checks the consis-
tency with anchor skeleton. We separately discuss the
cases based on the two possible location estimates of node
n1:

If OFA correctly determines the position of n1 as shown
in Fig. 3b, n2 can be accordingly located, as shown in
Fig. 3c. As the Euclidean distances between neighboring
nodes are close to the measured distances, the estimated
positions of n1 and n2 are consistent with the anchor skel-
eton. Consequently, these results are confirmed as shown
in Fig. 3f.

On the other hand, suppose OFA estimates node n1 to a
flipped position, as shown in Fig. 3d. Then, the position of
n2 is by no means consistent with the anchor skeleton, as
the resulting inter-node distances are much larger than
the measured distance, as shown in Fig. 3e. Such inconsis-
tency triggers an error correction process that re-assigns
correct locations to nodes n1 and n2 as shown in Fig. 3f.

To summarize, no matter whether OFA selects the cor-
rect location estimate for node n1 initially, it can always lo-
cate the nodes n1 and n2 correctly. This example only
shows 1-hop case, which is the simplest case. In a practical
network, node n2 may be several hops away from node n1.
This introduces several issues for implementing the opti-
mistic mechanism, listed as follows:

1. In a practical network, the optimistically located node,
i.e. node n1 in the example, may be confirmed by
another node, i.e. node n2 in the example, that is several
hops away from the node, thus we need to track
whether the location estimate of a node is robust or
not. We introduce a confidence mechanism (discussed
in Section 4.1) to quantitate the robustness of a location
estimate.

2. If node n2 is collinear with anchors a1 � a3, it cannot
confirm the location estimate of node n1. We design a
reverse update mechanism to address this issue, as dis-
cussed in Section 4.2.

3. When OFA detects an error, the source of the error, i.e.
the first flipped node causing the error, may be several
hops way from the node detecting the error. We need to
correct all nodes that influenced by the error-source
node. We propose an error correction procedure to do
this work as discussed in Section 4.3.

4. Finally, not all optimistically located nodes can be con-
firmed by the anchor skeleton, we should prune the
unreliable results to preserve the robustness of the final
result. We show this procedure and discuss the gain and
the cost of OFA in Section 4.4.

4. OFA Protocol

OFA includes four major components: (1) optimistic exe-
cution, (2) result confirmation, (3) error correction, and (4) fi-
nal result set determination. Optimistic execution iteratively
localizes nodes by multilateration, and records the location
estimates as the temporary position assignment (TPA). Then,
OFA checks whether there are errors in current TPA by the
anchor skeleton. If the TPA passes the check, OFA adopts
result confirmation procedure to validate the TPA. Other-
wise, OFA adopts error correction procedure to correct flips
in current TPA. Finally, final result set determination pro-
cedure prunes unconfirmed location estimates in the result
set and reports the final result.

4.1. Optimistic execution

Optimistic execution improves the traditional multila-
teration by integrating the procedures of confidence esti-
mate and consistency check. This extension is called
multilateration with flip ambiguity estimation (MFAE).

4.1.1. Confidence estimation
OFA adopts the concept of confidence to quantify how

much a location estimate can be accepted. Confidence is
often defined as the probability of the location of a node
is correctly estimated without flips. MFAE can adopt any
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Fig. 3. OFA overview. (a) The distance graph of the network. (b) OFA takes the correct location estimate as the result. (c) The correct result matches the
distance measurements, when node n2 is located, and this result passes the consistency check. (d) OFA takes the flipped location estimate as the result. (e)
The flipped result does not match the distance measurements, so that the consistency check fails. (f) The final results for nodes n1 and n2.
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off-the-shelf flip estimators [2,3,9] to evaluate the confi-
dence. Here, we adopt a geometric method [23]. The ratio-
nale of this method is that the target node is more likely to
be flipped if the reference nodes are approximately collin-
ear, where reference nodes refer to the nodes used to
determine the location of the target node in a multilatera-
tion. MFAE uses the width of the reference node set to esti-
mate the confidence of multilateration, and we define the
width of a point set as the minimal distance of two parallel
lines that contain the point set. Here, we linearly map the
width to confidence value into range [0,1]. For zero mean
Gaussian noise N(0,r2), we set the coefficient of the map-
ping to the reciprocal of three deviations, i.e. (3r)�1.

As shown in Fig. 2, in a network-wide flip, nodes refer-
ring to flipped nodes may also be flipped. Hence, the con-
fidence of a node is determined by both the confidence of
the multilateration and the confidences of the reference
nodes. Let m_confidence and r_confidence represent the
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confidence of the multilateration and the minimum confi-
dence of the reference nodes, respectively. We define the
confidence of the location estimate as min(m_confidence,
r_confidence). By this definition, the selection of reference
nodes influences the confidence of the target node. Taking
Fig. 4 as an example, node e is localized by the reference
node set {a,b,c,d} and the corresponding confidence
m_confidence = 1. If the reference node set is {a,b,c}, we de-
fine m_confidence to be 0.7. In addition, the confidences of
a,b,c, and d are set to be 1, 1, 1, and 0.5, respectively. If we
adopt all the reference nodes, the confidence of node e is
min(1,0.5) = 0.5. If we remove node d from the reference
node set, then m_confidence accordingly reduces to 0.7. Un-
der this configuration, as r_confidence is 1, the confidence
becomes min(0.7,1) = 0.7, which is better than the previous
case. In general, for a reference node set, if we remove the
reference node with lowest confidence, the value of r_con-
fidence increases and the value of m_confidence decreases.
Repeating this operation can yield the maximum confi-
dence of the target node.

4.1.2. Consistency check
We propose to use the maximum residual error (MRE) as

the indicator of the result consistency. MRE is defined as
the maximum deviation between the embedded distances
(derived from multilateration result) and the estimated
distances used for multilateration.

Typically, multilateration estimates the position of a
target node by minimizing the squared error between the
estimated distance and the measured distance through a
least square estimator:
p ¼ arg min
p

Xk

i¼1

ðkp� pik � ~diÞ2;

where p is the estimated position of the target node, k is
the total number of the reference nodes, pi, 1 6 i 6 k, de-
notes the position of reference node i, and ~di, 1 6 i 6 k, de-
notes the measured distance between the target node and
reference node i. Then, we define the MRE by

MRE ¼maxfjkp� pik � ~dijg;1 6 i 6 k;

which is the maximum error between the estimated dis-
tances and the measured distances, as shown in Fig. 5.

OFA adopts a threshold to determine the consistency. If
MRE is below the threshold, we say the corresponding
multilateration is successful; otherwise, it is failed. We in
detail analyze the threshold in Section 5.2.

OFA further determines what to do next according to
the result of the consistency check:

1. If the result is successful, OFA checks whether it should
confirm the temporary position assignment and exe-
cute result confirmation (described in Section 4.2).

2. If the result is failed, OFA will jump to the error correc-
tion procedure (described in Section 4.3).

We show the main procedure of OFA, MFAE, and confi-
dence computation in Algorithms 1–3, respectively.

Algorithm 1. OFA
Input: the distance graph G and the anchor node set
Anchor
Output: the position estimates

1: Mark all anchors as localized nodes
Localized = Anchor

2: while existing a node Node_N in G that has at

least three reference nodes Reference in Localized
do
3: ans = MFAE (Reference,
distance_measurement(Reference, Node_N))
4: switch ans.state

5: case success

6: Node_N.position = ans.position

7: Node_N.reference = Reference

8: Node_N.anchors = OR(Reference.anchors)

9: Node_N.multilateration_confidence = ans.

confidence

10: Node_N.confidence = Confidence(Reference)

11: for each ReferenceNode_r 2 Reference do

12: if

Node_N.anchors – ReferenceNode_r.anchors then

13: Result_Confirmation(ReferenceNode_r,

Node_N)

14: break

15: case failed

16: Error_Correction(Node_N, Reference)

17: Localized = Localized [ Node_N

18: for each Node_N 2Localized do

19: if Node_N.confidence < 1 then

20: Localized = LocalizednNode_N

21: return Localized
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Algorithm 2. MFAE
Input: the reference node set Reference and
the corresponding distance set

Distance_Measurement
Output: the position estimate, the consistency check,

and the confidence
1: Call traditional multilateration to estimate the

position of the node
Result.position = Multilateration
(Reference, Distance_Measure ment)

2: MRE = 0
3: for each ReferenceNode_r 2 Reference do
4: MRE = max(MRE, abs(kResult.position �

ReferenceNode_r.positionk � Distance_Measurement
ReferenceNode_r))

5: if MRE < THRESHOLD then
6: Result.state = success
7: else
8: Result.state = failed
9: Result.confidence = min(1, Width(Reference)/RATIO)
10: return Result
Algorithm 3. Confidence
Input: the reference node set Reference and the
corresponding confidence of
the nodes ref_confidence
Output: the confidence of the target node,
and the corresponding reference node set
1: m_confidence = min(1, Width(Reference)/RATIO)

2: r_confidence = min(ref_confidence)

3: confidence = min(m_confidence,r_confidenc)

4: while m_confidence > r_confidence do

5: Index_r= the index of the node with

minimum confidence value in ref_confidence

6: Reference = ReferencenIndex_r

7: ref_confidence = ref_confidencenIndex_r

8: if jReferencej < 3 then

9: break

10: m_confidence = min(1, Width(Reference)/

RATIO)

11: r_confidence = min(ref_confidence)

12: confidence = max(confidence,min

(m_confidence,r_confidence))

13: return confidence and the

corresponding reference node set
4.2. Result confirmation

Result confirmation validates the temporary position
assignment, provided that the assignment passes consis-
tency check. As OFA uses confidence to quantify correct-
ness, result confirmation is accomplished by increasing
the confidence values of the located nodes.

To check consistency, OFA records all the anchors that a
node directly or indirectly refers to. That is, the anchor
dependence set of a target node is the union of all the an-
chor dependence sets of its reference nodes. If a node is
successfully localized by multilateration and the anchors
which it depends on are different with that of any refer-
ence node, the temporary position assignment is consis-
tent with the anchor skeleton.

To efficiently validate the optimistically localized
nodes, OFA records the reference node set on each node,
which forms a directed acyclic graph, called distributed
dependence graph (DDG). DDG is the key structure for re-
sult confirmation and error correction.

Result confirmation recursively updates the confidence
of nodes along DDG. Fig. 6a shows an example. Node c is
localized based on nodes a, b, and anchor A. As a, b, and
A are approximately collinear, the confidence of c is low.
Then, node d is successfully localized based on anchors B,
C, and node c, i.e. d.anchor = c.anchor [ B [ C. Considering
B, C R d.anchor, we have d.anchor – c.anchor. Then, OFA
confirms the location estimates of c.

To update the confidence of c, OFA temporally adds an
edge hc,di into the DDG and assumes that the position esti-
mate for node d is correct in the next step. Taking node d as
another reference node, OFA updates the confidence of
node c, as shown in Fig. 6b. Note that the update does
not actually change the DDG of the network, and the edge
is added conceptually to explain how the confidence is up-
dated. After node c is updated, this procedure recursively
operates on its reference nodes (parent nodes), such as
nodes a and b. In addition, the children nodes will also up-
date their confidences, if their confidences are dominated
by the updated node, such as node d and e in this example.
We show the details of confidence updating procedure in
Algorithm 4.

Algorithm 4. Result_Confirmation

Input: the node Node_n to be updated and the parent
node ParentNode_s

Output: the new confidence of the processed nodes
1: Reference = Node_n.reference [ ParentNode_s
2: confidence = Confidence(Reference)
3: if confidence = Node_n.confidence then
4: Return
5: Node_n.confidence = confidence
6: update_list = nodes depending on node n
7: for each node Node_i in update_list do
8: confidence = Confidence(Node_i.reference)
9: if confidence > Node_i.confidence then
10: Node_i.confidence = confidence
11: append nodes depending on node i to the

update_list
12: for each Node_i 2 Node_n.reference do
13: Result_Confirmation(Node_i,Node_n)
14: return updated nodes and corresponding

confidence values
4.3. Error correction

Error correction identifies and corrects flipped nodes,
when an error is detected in consistency check. A general
case of error correction is the network-wide flip: a single
node flip causes a part of the network flipping over another
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part. In this case, the source of the error, i.e. the first flipped
node, may be several hops away from the node detecting
the error. To eliminate such an error, OFA adopts a
depth-first search on DDG for locating the source of the er-
ror. First, OFA generates a list of nodes to indicate the order
of attempts, defined as attempt list. Second, OFA flips the
position estimate of the first node in the attempt list. Third,
OFA recursively updates the position estimates of the
nodes along DDG. When the update process raises an error
in consistency check, OFA will terminate this attempt and
start another process by flipping the next node in the at-
tempt list. If no error occurs until the update process
reaches the node detecting the inconsistency, the error is
eliminated. Then, the updated nodes are informed to ac-
cept the new position assignment. Finally, OFA also checks
the anchor dependence to validate the temporary result,
and goes on to localize other nodes.

Error correction must address two main issues. First,
considering the computational and communicational costs,
OFA must locate the source of error efficiently. Second,
when locating a node as the source of error, OFA must flip
its position estimate efficiently.

OFA adopts confidence-based node selection to locate
the source of error. As locating a network by trilateration
is an iterative process, we can list a sequence of the
localized nodes in order of being located by multilatera-
tion. For the error-detection-node, there is a set of nodes
must be located before the error-detection-node can be
located. Such node set is the search space of the error
correction procedure. OFA utilizes the confidence of the
multilateration as indicator, because it shows the proba-
bility whether the node is flipped. Thus, OFA sorts the
a

b c d

(a)

A

B

C

e

Fig. 6. Confiden

(a)

Fig. 7. The representing line
nodes in the reference set by their multilateration confi-
dences, and processes the aforementioned attempt in
this order. By the definition of confidence, the multilater-
ation confidence of a node is not less than its confidence.
Hence, we can easily locate the node with the lowest
multilateration confidence in the search space, which is
the node with equal confidence and multilateration con-
fidence. Our experiments show that this node is the
source of the error in most cases.

It is computation intensive to flip a node by searching
the whole solution space of the multilateration. For the sake
of efficiency, OFA flips the position estimate of a node by
the following steps: first, selects a line; then, reflects the
position estimate against the line; finally, uses the reflected
position as initial position and refines this result by multi-
lateration. The key of this procedure is how to define the
line for reflecting the position estimate, called the repre-
senting line. As shown in Fig. 7a, the solid dots indicate
the reference nodes and the vertical dashed line denotes
the representing line of the reference nodes. However, the
traditional linear regression of the reference nodes is not
suitable for this requirement. Take Fig. 7a as an example,
if we compute the linear regression of the reference node,
we will get the result as shown in Fig. 7b, in which the line
is orthogonal to the distribution of the reference nodes. This
problem is due to the estimate function of linear regression:

Qðb0;b1Þ ¼
X
½yi � ðb0 þ b1xiÞ�2

which only considers the difference of y-value.
OFA makes two departures from the traditional linear

regression. First, OFA adopts the general form Ax +
a

b c d

(b)

A

B

C

e

ce update.

(b)

of the reference nodes.
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By + C = 0 to present an arbitrary line. Second, OFA adopts a
coordinate-system-free estimate function as follow:

QðA;B;CÞ ¼
X ðAxi þ Byi þ CÞ2

A2 þ B2 :

This formula is the sum of squared distances between the
nodes and the estimated line, which can better represent
the distribution of the nodes.

We thus obtain the following simultaneous equations:

@QðA;B;CÞ
@A ¼

P
2 ðAxiþByiþCÞðB2xi�AByi�ACÞ

ðA2þB2Þ2
¼ 0

@QðA;B;CÞ
@B ¼

P
2 ðAxiþByiþCÞðA2yi�ABxi�BCÞ

ðA2þB2Þ2
¼ 0

@QðA;B;CÞ
@C ¼

P
2 AxiþByiþC

A2þB2 ¼ 0

8>>>><
>>>>:
Simplifying the equations, we obtain two independent
equations:

A�xþ B�yþ C ¼ 0
SxyA2 � ðSxx � SyyÞAB� SxyB2 ¼ 0

�
;

where �x ¼ 1
k

P
xi; �y ¼ 1

k

P
yi; Sxy ¼

P
ðxi � �xÞðyi � �yÞ; Sxx ¼P

ðxi � �xÞ2, and Syy ¼
P
ðyi � �yÞ2 for k nodes.

If Sxy = 0, the result is unique; If Sxy – 0, there are two
possible solutions. In this case, we need to check the value
of Q(A,B,C) and take the solution with smaller Q(A,B,C)
value.

Note that the error handling procedure can only cor-
rect the flip of one node. It will fail in handling the er-
rors which are caused by multiple flips, defined as the
combined flip. As shown in Fig. 8, the error on the node
marked by diamond is caused by the combination of
two flips. In this case, flipping a single node cannot elim-
inate the error. OFA ignores the combined flip for the fol-
lowing reasons. First, in an actual network, the
probability of forming a combined flip is very low. Sec-
ond, to handle the combined flip will incur huge compu-
tational cost, which is not practical. Third, as OFA can
prune the non-robust nodes, ignoring the combined flip
will not decay the robustness of the final result. Finally,
we show the details of error correction procedure in
Algorithm 5.
Fig. 8. Combined flip.
Algorithm 5. Error_Correction
Input: the node Node_n that detects an error
Output: the new position assignment of nodes
1: attempt_list = sort the nodes in the reference set of

Node_n by their local confidence values
2: for each node Node_s in attempt_list do
3: Node_s.attempted_position = the flipped position of

Node_s
4: update_list = nodes depending on node Node_s
5: for each node Node_i in update_list do
6: ans = MAFE(Node_i.referece,distance_

measurement
(Node_i.reference,Node_i))

7: if ans.state = failed then
8: break
9: else
10: Node_i.attempted_position =

ans.position
11: Node_i.attempted_

multilateration_confidence =
ans.confidence

12: Node_i.attempted_confidence = Confidence
(Node_i.reference)

13: update_list = append nodes depending on
node Node_i to the update_list

14: if Node_i = Node_n then
15: Notify all the attempted nodes to accept

the new position assignment
16: for each Node_r 2 Node_n.reference do
17: if Node_n.anchors – Node_r.anchors then
18: Result_Confirmation(Node_r,Node_n)
19: return true
20: return false
4.4. Final result set determination

OFA repeats the above procedures until no node can be
optimistically localized in the network. As not all the
flipped nodes can be detected by the anchor skeleton,
OFA needs to prune non-robust location estimates in the
result set. That is, the confidence value must be above a
predefined threshold. We set the threshold to 1 for robust-
ness. Generally, the nodes on the brim of the network have
fewer chances to be validated by anchors and are prone to
be excluded in the final result set.

To summarize, through precious computation and
checking, OFA can locate a larger number of nodes and
yield more robust localization results simultaneously than
existing approaches. According to the experience on real-
world large-scale networks [24,25], it is highly worthy to
trade computational costs for location accuracy. First,
many location-based services, for example geographic
routing [26], cannot work properly on the nodes without
locations or with incorrect locations. Hence, accurate local-
ization is more essential than efficiency related issues. Sec-
ond, as localization only needs one-time-execution for
static networks during the setup phase, it is profitable to
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spend more resource in this step, for better quality of ser-
vice in the rest of the network lifetime.

5. Analysis

In this section, we formally analyze the expected per-
formance gain and the cost of OFA, as well as the threshold
used in consistency check step.

5.1. Performance analysis

1. PFN denotes the proportion of flips in all location esti-
mates, if we do not adopt any flip avoidance in localiza-
tion. Hence, PFN is equal to the overall proportion of
false negative predictions.

2. PRT denotes the probability that a node passes the robust
test, when we adopt a flip predictor. As the predictor is
reliable, it requires two conditions for a node to pass the
test: (1) robust to flip ambiguity; (2) not excluded by
the false positive predictions. Let PRT ¼ 1� PRT to denote
the probability that a node fails in the robust test.

3. Rv denotes the proportion of nodes confirmed by anchor
skeleton out of all the optimistically localized nodes. It
is approximately equal to the ratio of the area of the
convex hull of all anchors to the total area of the net-
work. With the increase of anchor numbers, this ratio
can continuously approach 1.

4. CEH denotes the mean cost to correct a flip by OFA. Here, we
use the number of multilaterations to evaluate the cost.
CEH can be reduced by increasing the number of anchors.

Theorem 1. The performance gain of the optimistic scheme
to pessimistic scheme is at least 1þ RvPRT=PRT .

Proof 1. Suppose we localize a network with large number
of nodes, so that we ignore the boundary of the network.
We analyze the state that the pessimistic method finishes
the localization procedure.

Suppose the pessimistic method robustly localizes Np

nodes. Locating these Np nodes will test Np/PRT nodes. If we
localize the same node set by the optimistic method, the Np

nodes will also be localized robustly. The remaining PRT Np=PRT

nodes will be optimistically localized, and RvPRT Np=PRT of
them will be validated by anchors. Hence, in current state,
optimistic method will successfully localize ð1þ RvPRT=

PRTÞNp nodes. This is the lower bound of nodes that the
optimistic method can localize, because the optimistic
method does not finish the localization procedure in this state
and may further localize other nodes in the network. Hence,
the lower bound of the performance gain is 1þ RvPRT=PRT . h

Theorem 2. When we use the optimistic method, the
expected number of multilaterations to localize a node is:
1þ RvPFNCEH

PRT þ RvPRT
:

Proof 2. The cost for the optimistic method comes from
two aspects: the costs for optimistically localizing nodes
and for error handling. Suppose we have successfully local-
ized No nodes. Let N denote the total number of optimisti-
cally localized nodes. Thus, N is the total number of
multilaterations for optimistic localization. As discussed
in Theorem 1, the localized nodes are either directly local-
ized as robust, or the nodes that are optimistically local-
ized and validated by anchors. Hence, we have
No ¼ PRT N þ RvPRTN. That is N ¼ No=ðPRT þ PRT RvÞ. Locating
N node will introducePFNN errors, among which RvPFNN will
be detected and corrected. Hence, the cost of error
handling is RvPFNNCEH. In sum, the mean number of
multilaterations to localize a node by optimistic method
is given by:

1þ RvPFNCEH

PRT þ RvPRT
:

h

For example, a network with average degree 9 and 10%
anchors may typically have the following parameters:
PFN = 0.1, PRT = 0.7, Rv = 0.8, and CEH = 1.3. Then, the lower
bound of the performance gain would be 1.34, and the cost
would be 1.17. Actually, our experiment results show that
OFA can perform far better than that lower bound when
the target network is sparse.

5.2. Threshold analysis

In consistency check step, OFA adopts the MRE to
determine the consistency of current position assignment.
Actually, when there is a flip, we can observe a huge in-
crease of MRE. Hence, OFA can accept a wide range of
threshold. In this appendix, we analyze the threshold
selection of OFA.

We use a probabilistic model to present the uncertain-
ties of the distance measurements and position estimates.
Many researches [9,11] show that the distance measure-
ments are roughly Gaussian distributed. As the systematic
deviation can be subtracted out by calibrating the mea-
surement results, we assume the measurement errors are
zero mean Gaussian distributed: f ðerÞ ¼ N 0;r2

r

� �
, where

er denotes the measurement error and rr denotes the stan-
dard deviation of the error. We model the location estima-
tion error of node i as a random variable ei. The physical
meaning of ei is the error of distance estimation caused
by the localization error in multilateration. We assume ei

is Gaussian, and let f ðeiÞ ¼ N 0;r2
i

� �
, where ri denotes the

standard deviation of ei.
We analyze ri and the bound of MRE with no flip ambi-

guities. Suppose we localize a node by measurements with
k neighboring nodes n1, n2, . . . , nk. Following the same
notations, we use nk+1 to denote the target node. Let ri de-
note the standard deviation of node ni, 1 6 i 6 k + 1. The er-
ror of the target node, presented by rk+1 is related to the
error of each reference and the error of distance measure-
ments er. For each reference node i, 1 6 i 6 k, the effective
error Ei for localizing node nk+1 is the sum of ei and er, i.e.
Ei ¼ ei þ er; f ðEiÞ ¼ N 0;r2

r þ r2
i

� �
. In the location estimation

phase, the errors from the reference nodes counteract each
other. Hence, the error of the result is the average of all the
effective errors, that is

r2
iþ1 ¼

1
k

r2
r þ r2

i

� �
;

where r2
i ¼

Pk
1r2

i =k. This formula shows the way of updat-
ing the standard deviation ri for each node.
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Since the error of the result is the average of the effec-
tive errors, the residual error on each measurement is de-
noted by REi ¼ Ei � Ei;1 6 i 6 k, where Ei ¼

Pk
1Ei=k.

Then, the MRE is denoted by max{jREij,1 6 i 6 k}. By the
distribution of Ei, we obtain

f ðREiÞ ¼ N 0; 1� 1
k

� �
r2

r þ 1� 2
k

� �
r2

i þ
1
k
r2

i

� �
;1 6 i 6 k:

Using the approximation r2
i � r2

i , we get the identical dis-
tribution of each REi:

f ðREiÞ ¼ N 0; 1� 1
k

� �
r2

r þ r2
i

� �� �
;1 6 i 6 k:

Using the inequality maxðjEi � EijÞ 6
P
jEi � �Eij=2, we ob-

tain an upper bound of MRE, denoted by MREmax:

MREmax ¼
1
2

Xk

i�1

jREij:

By the distribution of REi, we obtain

EðjREijÞ ¼
ffiffiffi
2
p

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

k

� �
r2

r þ r2
i

� �r

DðjREijÞ ¼ 1� 2
p

� �
1� 1

k

� �
r2

r þ r2
i

� �
8>><
>>: ;1 6 i 6 k:

By the central limit theorem, we obtain an approximate
distribution of MREmax:

f ðMREmaxÞ ¼ N
1
2

ffiffiffiffi
2
p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk� 1Þ r2

r þ r2
i

� �r
;
1
4

1� 2
p

� � 

� ðk� 1Þ r2
r þ r2

i

� �
Under less than 1% chance faults, we obtain an upper
bound ofMREmax as well as MRE:

MRE 6
1
2

ffiffiffiffi
2
p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk� 1Þ r2

r þ r2
i

� �r
þ 3

2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p

� �
ðk� 1Þ r2

r þ r2
i

� �s

¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk� 1Þ r2

r þ r2
i

� �r ffiffiffiffi
2
p

r
þ 3ffiffiffi

k
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p

r !

For the second part, as the number of references k P 3 is
necessary for multilateration, we get the following
relaxations:ffiffiffiffi

2
p

r
þ 3ffiffiffi

k
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p

r
6

ffiffiffiffi
2
p

r
þ

ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffi

1� 2
p

r

<
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
p
þ 3 1� 2

p

� �s
< 2:

Hence, we obtain an upper bound of MRE:

MRE <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk� 1Þ r2

r þ r2
i

� �r
:

In optimistic execution procedure, if the MRE breaks the
upper bound, OFA detects an error of current position
assignment.
6. Performance evaluation

We conduct extensive simulations to evaluate OFA.

6.1. Experiment setup

We randomly distribute 200 nodes in a square region,
with a certain percentage of them as anchors. The mean
degree of the network instances are controlled by the dis-
tance measurement range. The distance measurements be-
tween neighboring nodes are corrupted by zero mean
Gaussian noises [9]. For each set of simulations, we take
multiple runs and report the average.

We evaluate OFA by comparing with the state-of-the-art
design, robust quadrilaterals (RQ).[2]. RQ adopts robust local
structures to avoid flip ambiguity, in which it sets a bound on
the geometric element to achieve the robustness of the four-
node local maps. We implement full RQ algorithm with clus-
ter optimization to mitigate error accumulation.

We use three metrics in our simulations: performance,
accuracy, and cost. The proportion of robustly localized
nodes shows performance of each algorithm. The standard-
ized position estimation error (SPEE) indicates the localiza-
tion accuracy of each algorithm, defined as the percentage
value between the mean position estimation error and the
maximum distance-measurement range:

SPEE ¼ 1
nRmax

Xn

i¼1

kpi � p̂ik � 100%;

where n is the total number of robustly localized nodes,
Rmax is the maximum range of distance measurement, pi

and p̂i are the ground truth position and the estimated po-
sition of node i, respectively. If n = 0, we define SPEE as
Not-a-Number and do not count such values in the final re-
sult. We evaluate the cost by the mean number of multila-
terations for localizing a node by each algorithm.
Moreover, we conduct the experiments by controlling the
following parameters:

1. the mean degree of the network instances;
2. the proportion of anchors in the network;
3. the standard deviation of the ranging noise.

In addition, we also evaluate OFA by comparing with a
SDP-based algorithm [27], named SDP for short. We imple-
ment the whole algorithm by using SDPT3 toolbox. As SDP
requires high computational cost, we adopt 50 nodes in this
experiment. Besides, SDP is designed for accurate distance
measurements. Our experiment results show that SDP can-
not work well when the maximum error is higher than 1%.
Hence, we set the maximum error to be 0.001%, 0.01%,
0.1%, and 1%, respectively, and show the results in logarith-
mic scales.

6.2. The impact of average degree

We first examine the performance and cost of OFA and
RQ when the node average degree varies. We fix the anchor
proportion to 10% and set the errors to be at most (three
deviations) 10% of distance measurements. The average
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Fig. 10. The impact of anchor proportion. (a) The number of robustly
located nodes. (b) The average positioning error. (c) The average cost per
locating a node.
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Fig. 9. The impact of average degree. (a) The number of robustly located
nodes. (b) The average positioning error. (c) The average cost per locating a
node.
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degree of each instance varies from 0 to 30 with step
length about 0.2.

Fig. 9a plots the proportion of robustly localized nodes
against average degree. When the average degree
increases, both algorithms localize more nodes. OFA can
localize the entire network when the average degree is
greater than 10. The requirement is nearly the same as
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Fig. 11. The impact of error magnitude. (a) The number of robustly
located nodes. (b) The average positioning error. (c) The average cost per
locating a node.
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traditional multilateration [2], which means that OFA ob-
tains robustness by extremely low performance cost. In
contrast, RQ requires the average degree over 25 for local-
izing the entire network. In fact, RQ needs to generate uni-
formly overlapped local clusters to form global clusters.
However, the flip ambiguity predictor of RQ drops a large
proportion of local maps in the generation step, so that
RQ demands high network density to compensate the false
positive predictions.

Fig. 9b plots the SPEE against average degree. The SPEE
of OFA decreases when the average degree increases. Nev-
ertheless, the SPEE of RQ is quite stable over all the tested
ranges. RQ can hardly benefit from the increase of average
degree, because RQ always generates four-node local maps,
i.e. localizing a node by three measurements only. In con-
trast, OFA performs a more accurate estimate through all
available distance measurements, leading to a better error
control with the increase of the average degree.

Fig. 9c plots the mean number of multilaterations
needed for localizing a node. Note that we do not show
the results that no nodes are localized, so the left most of
this graph is blank. With the increase of the average degree,
the cost of each algorithm decreases. The cost for OFA in-
cludes the attempt of localizing nodes that are not validated
in the final step as well as error handling. For RQ, it must
blindly generate all possible local clusters, no matter
whether they are finally localized or not. Such a procedure
introduces many multilaterations that do not contribute to
the final result set. As shown in Fig. 9c, even in the worst
case, OFA seldom localizes a node by over two multilatera-
tions, and the cost of OFA is always lower than RQ.

6.3. The impact of anchor proportion

We further examine the performance and cost when the
anchor density varies. We fix the average degree about 12
and set the errors at most 10% of distance measurements.
We report the mean result of 50 network instances in
Fig. 10, while the proportion of anchors varies from 5% to
50% with step length 5%.

Fig. 10a plots the proportion of localized nodes against
anchor density. OFA can successfully localize most nodes
when the proportion of anchors is over 10%, because OFA
only requires the network to have enough anchors for
the consistency check. On the other hand, RQ performs lin-
early with anchor density. As RQ discards many local maps
by the flip predictor, it cannot generate a network-wide
global map. In this case, the chance of localizing the
small-scale clusters is linear with anchor density.

Fig. 10b shows the SPEE against anchor density. The
SPEE of OFA decreases when more anchors exist, as more
anchors will help to make a better position estimation as
well as to diminish the error accumulation. Based on the
small-scale clusters, RQ cannot be aware of the density of
anchors in cluster generation and merging steps. Hence,
more anchors cannot restrain the error accumulation of
RQ. As a result, RQ does not benefit much from the increase
of anchor density.

Fig. 10c shows the number of multilaterations needed
to localize a node for each algorithm. OFA can achieve al-
most the ideal execution cost, because the false negative
rate for flips is naturally very low in actual networks. For
RQ, the overall execution cost of cluster generation is inde-
pendent of the anchor density. Hence, the mean cost of
localizing a node is dominated by the total number of
nodes that are successfully localized. As a result, the mean
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cost is inversely proportional to the number of localized
nodes.

6.4. The impact of measurement error

In this section, we evaluate the performance and cost
when the standard deviation of the errors varies. We fix
the anchor proportion to 10% and set the average degree
at around 20. We report the mean result of 50 network in-
stances in Fig. 11, while the maximum proportion of error
varies from 0 to 20 with step length 1.

Fig. 11a plots the proportion of localized nodes against
the error magnitude. The performance of OFA decreases
slightly with the increase of errors, because the optimistic
mechanism of OFA can properly compensate the impact of
the increased errors. In contrast, the number of localized
nodes for RQ decreases rapidly when the error magnitude
enlarges. Larger errors lead to severer false positive predic-
tions in the cluster generation of RQ. Hence, the perfor-
mance of RQ degrades sharply, when the cluster
generation step cannot produce adequate overlapped local
clusters.

Fig. 11b plots the SPEE against error magnitude. The
SPEE of OFA is approximately linear to the error configura-
tion. The SPEE of RQ is a bit complicated. When the propor-
tion of error is less than 8%, the SPEE of RQ is also
approximately linear to the error magnitude. Then, the
SPEE of RQ starts to increase slowly and fluctuate more.
The reason is that RQ does not locate the full network in
this stage. When an algorithm locates only a few nodes,
it suffers less error accumulation, so as to decrease the
overall error.

Fig. 11c shows the mean number of multilaterations
needed to localize a node for each algorithm. The cost of
OFA is quite stable over the tested range. For RQ, the cost
is in the same level of OFA when the error magnitude is
low, then it increases sharply when the error magnitude
increases. This is because that the mean cost is highly re-
lated to the total number of successfully localized nodes,
as discussed before.

6.5. Evaluation with SDP scheme

In this section, we evaluate OFA by comparing with a
SDP-based method, which is also aimed to solve flip ambi-
guity. As SDP is computational intensive, we deploy 50
nodes in total, among which 10 nodes are anchors. The
average degree of the network instances is about 10. The
SDP-based method is designed for accurate distance mea-
surements. When the maximum error is beyond 1%, it fails
to locate most network instances. Hence, we restrict the
maximum ranging error to be 0.001%, 0.01%, 0.1%, and
1%, respectively. We report the mean result of 50 network
instances in Fig. 12 with diversified error magnitude.

Fig. 12a plots the proportion of successfully localized
nodes against the error magnitude. The performance of
OFA decreases slightly with the increase of errors, because
the increased error results in higher drop rate in the final
step of OFA. In contrast, the number of localized nodes
for SDP decreases rapidly when the error magnitude en-
larges. As SDP formulation is based on precise inter-node
distances, the increased measurement errors make it hard
to obtain the global optimum result. This then causes high-
er rejection rate when we evaluate the localization errors.

Fig. 12b plots the SPEE against error magnitude. Both
SDP and OFA perform approximately linear error increase
in the log–log scales. The actual error of SDP is much high-
er than that of OFA. As we have discussed, the measure-
ment error may mislead the optimizing process of SDP to
converge at a local minima. Unfortunately, this error influ-
ences all nodes, because SDP compute the locations of all
nodes simultaneously. In contrast, OFA can build high
accurate results step by step. As a result, OFA achieves
fairly more accurate results than SDP does.
7. Conclusions and future work

By exploiting the characteristics of flip ambiguity,
which causes either huge or zero error, we propose the
concept of optimistic localization and design an algorithm,
OFA, that employs a global consistency check and a loca-
tion correction phase in the localization process. OFA can
locate a larger number of nodes and yield more robust
localization results simultaneously than existing
approaches.
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The future work leads into two directions. First, we will
investigate the characteristics of combined flip, as naı̈ve
eliminating combined flip may introduce exponential cost
with the number of flips. Second, to further improve the
performance, we will apply the concept of clusters in
OFA design. Currently, we are implementing OFA in our
ongoing projects.
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